X-Ray Crystallography

Cores and technologies

Crystal Clear

We provide investigators state-of-the-art equipment and resources for crystallographic analysis of their target macromolecules or small molecules.

 X-Ray Crystallography reveals the structure of molecules when X-rays are diffracted through crystalized samples.

Equipment

  • Minstrel III, an automatic plate handling and imaging system
  • RoboIncubators, which can store crystallization plates in a temperature and humidity controlled environment
  • Leica stereomicroscope and a high powered stereoscope for manual crystal photography, crystal screening, and crystal manipulation
  • Gryphon Crystallization Robot, which can set up nano liter drops in minutes
  • Bruker AXS Smart APEX CCD diffraction system with a molybdenum sealed X-ray tube for small molecule X-ray crystallography
  • Rigaku MicroMax-007 HFM X-ray generator with a VariMax HR optics and an X-Stream 2000 crystal cryo-freezing system
  • Mar345dtb image plate detector for recording X-ray diffraction patterns
  • Proteros Free Mounting System (FMS) for handling and manipulating room temperature grown crystals for diffraction optimization
  • Dedicated computers for data collection and processing

Services

  • Crystallization Screening: For macromolecular crystallization experiments, the core facility uses commercially available 960 crystallization conditions plus various optimization reagents whose combination can make millions of different crystallization conditions.
  • Data Collection Service: Diffraction experiments will be performed at in-house X-ray facility as well as a synchrotron beam lines.
  • Structure Determination and Analysis: A complete data set collected at home or synchrotron will be processed for inorganic, organic, protein or nucleic acid structure determination, model building and crystallographic refinement.
  • Other Structural Biology Related Services: The core facility offers thorough analysis of a macromolecular structure or a group of structures for publication or grant applications. The core also provides computational experiments such as homology modeling and in silico ligand docking.

Projects

  • Inhibitor Design and Optimization of Protein Kinases
  • RNA Repeat Expansion Disease
  • Receptor forAdvance Glycation Endproduct

Contacts

Director

HaJeung Park, Ph.D.

(561) 228-2121
ha.park@ufl.edu

Useful Links

Software Packages

Synchrotron Sites

Other Resources

Publications

Select Publications

Tran MH, Park H, Nobles CL, Karunadharma P, Pan L, Zhong G, Wang H, He W, Ou T, Crynen G, Sheptack K, Stiskin I, Mou H, Farzan M. A more efficient CRISPR-Cas12a variant derived from Lachnospiraceae bacterium MA2020. Mol Ther Nucleic Acids. 2021 Jun 4;24:40-53. doi: 10.1016/j.omtn.2021.02.012. eCollection 2021 Jun 4. PubMed PMID: 33738137; PubMed Central PMCID: PMC7940699.

McEnaney P, Balzarini M, Park H, Kodadek T. Structural characterization of a peptoid-inspired conformationally constrained oligomer (PICCO) bound to streptavidin. Chem Commun (Camb). 2020 Sep 16;56(72):10560-10563. doi: 10.1039/d0cc02588g. Epub 2020 Aug 12. PubMed PMID: 32785302; PubMed Central PMCID: PMC7486224.

Goydel RS, Weber J, Peng H, Qi J, Soden J, Freeth J, Park H, Rader C. Affinity maturation, humanization, and co-crystallization of a rabbit anti-human ROR2 monoclonal antibody for therapeutic applications. J Biol Chem. 2020 May 1;295(18):5995-6006. doi: 10.1074/jbc.RA120.012791. Epub 2020 Mar 19. PubMed PMID: 32193207; PubMed Central PMCID: PMC7196640.

Park H, González ÀL, Yildirim I, Tran T, Lohman JR, Fang P, Guo M, Disney MD. Crystallographic and Computational Analyses of AUUCU Repeating RNA That Causes Spinocerebellar Ataxia Type 10 (SCA10). Biochemistry. 2015 Jun 23;54(24):3851-9. doi: 10.1021/acs.biochem.5b00551. Epub 2015 Jun 12. PubMed PMID: 26039897; PubMed Central PMCID: PMC4876817.

Park H, Iqbal S, Hernandez P, Mora R, Zheng K, Feng Y, LoGrasso P. Structural basis and biological consequences for JNK2/3 isoform selective aminopyrazoles. Sci Rep. 2015 Jan 27;5:8047. doi: 10.1038/srep08047. PubMed PMID: 25623238; PubMed Central PMCID: PMC4306959.

Park H, Adsit FG, Boyington JC. The 1.5 Å crystal structure of human receptor for advanced glycation endproducts (RAGE) ectodomains reveals unique features determining ligand binding. J Biol Chem. 2010 Dec 24;285(52):40762-70. doi: 10.1074/jbc.M110.169276. Epub 2010 Oct 13. PubMed PMID: 20943659; PubMed Central PMCID: PMC3003376.

Park H, Adsit FG, Boyington JC. The 1.4 angstrom crystal structure of the human oxidized low density lipoprotein receptor lox-1. J Biol Chem. 2005 Apr 8;280(14):13593-9. doi: 10.1074/jbc.M500768200. Epub 2005 Feb 5. PubMed PMID: 15695803.

Park H, Lee JH, Gouin E, Cossart P, Izard T. The rickettsia surface cell antigen 4 applies mimicry to bind to and activate vinculin. J Biol Chem. 2011 Oct 7;286(40):35096-103. doi: 10.1074/jbc.M111.263855. Epub 2011 Aug 13. PubMed PMID: 21841197; PubMed Central PMCID: PMC3186400.

Park H, Suquet C, Satterlee JD, Kang C. Insights into signal transduction involving PAS domain oxygen-sensing heme proteins from the X-ray crystal structure of Escherichia coli Dos heme domain (Ec DosH). Biochemistry. 2004 Mar 16;43(10):2738-46. doi: 10.1021/bi035980p. PubMed PMID: 15005609

Park H, Zhang K, Ren Y, Nadji S, Sinha N, Taylor JS, Kang C. Crystal structure of a DNA decamer containing a cis-syn thymine dimer. Proc Natl Acad Sci U S A. 2002 Dec 10;99(25):15965-70. doi: 10.1073/pnas.242422699. Epub 2002 Nov 27. PubMed PMID: 12456887; PubMed Central PMCID: PMC138548.

Full list

https://www.ncbi.nlm.nih.gov/myncbi/1JIfcdkwdJp5k/bibliography/public/?page=1